Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Antioxidants (Basel) ; 12(10)2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37891979

RESUMO

The microencapsulation of bioactive extracts of Chilean papaya waste, including both seeds and skin, was investigated. Papaya waste extract microcapsules utilizing maltodextrin at 10% (MD10), 20% (MD20), and 30% (MD30) (w/v) as the wall material through the freeze-drying process were obtained, and subsequently their physicochemical, antioxidant, and antimicrobial properties were evaluated. The TPC efficiency and yield values achieved were more than 60% for the microencapsulated seed and skin extracts, respectively. The best results for phenolic and antioxidant compounds were found in the microencapsulated seed extract with MD20, with a value of 44.20 ± 3.32 EAG/g DW for total phenols and an antioxidant capacity of 12.0 ± 0.32 mol ET/g DW for the DPPH and 236.3 ± 4.1 mol ET/g DW for the FRAP assay. In addition, the seed and skin samples reduced ROS generation in H2O2-treated Hek293 cells. In terms of antimicrobial activity, values ranging from 7 to 15 mm of inhibitory halos were found, with the maximum value corresponding to the inhibition of S. aureus, for both microencapsulated extracts. Therefore, the successful microencapsulation of the waste bioactive extracts (seed and skin) with the demonstrated antimicrobial and antioxidant properties highlight the bioactivity from Chilean papaya waste resources.

2.
Int J Mol Sci ; 24(13)2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37446093

RESUMO

The endocannabinoid system (ECS) constitutes a broad-spectrum modulator of homeostasis in mammals, providing therapeutic opportunities for several pathologies. Its two main receptors, cannabinoid type 1 (CB1) and type 2 (CB2) receptors, mediate anti-inflammatory responses; however, their differing patterns of expression make the development of CB2-selective ligands therapeutically more attractive. The benzo[d]imidazole ring is considered to be a privileged scaffold in drug discovery and has demonstrated its versatility in the development of molecules with varied pharmacologic properties. On the other hand, the main psychoactive component of Cannabis sativa, delta-9-tetrahydrocannabinol (THC), can be structurally described as an aliphatic terpenoid motif fused to an aromatic polyphenolic (resorcinol) structure. Inspired by the structure of this phytocannabinoid, we combined different natural product motifs with a benzo[d]imidazole scaffold to obtain a new library of compounds targeting the CB2 receptor. Here, we synthesized 26 new compounds, out of which 15 presented CB2 binding and 3 showed potent agonist activity. SAR analysis indicated that the presence of bulky aliphatic or aromatic natural product motifs at position 2 of the benzo[d]imidazoles ring linked by an electronegative atom is essential for receptor recognition, while substituents with moderate bulkiness at position 1 of the heterocyclic core also participate in receptor recognition. Compounds 5, 6, and 16 were further characterized through in vitro cAMP functional assay, showing potent EC50 values between 20 and 3 nM, and compound 6 presented a significant difference between the EC50 of pharmacologic activity (3.36 nM) and IC50 of toxicity (30-38 µM).


Assuntos
Produtos Biológicos , Canabinoides , Animais , Agonistas de Receptores de Canabinoides/farmacologia , Produtos Biológicos/farmacologia , Canabinoides/farmacologia , Canabinoides/química , Imidazóis , Receptor CB2 de Canabinoide , Receptor CB1 de Canabinoide , Relação Estrutura-Atividade , Mamíferos
3.
Antioxidants (Basel) ; 12(7)2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37507978

RESUMO

NADPH oxidase (NOX2) is responsible for reactive oxygen species (ROS) production in neutrophils and has been recognized as a key mediator in inflammatory and cardiovascular pathologies. Nevertheless, there is a lack of specific NOX2 pharmacological inhibitors. In medicinal chemistry, heterocyclic compounds are essential scaffolds for drug design, and among them, indole is a very versatile pharmacophore. We tested the hypothesis that indole heteroaryl-acrylonitrile derivatives may serve as NOX2 inhibitors by evaluating the capacity of 19 of these molecules to inhibit NOX2-derived ROS production in human neutrophils (HL-60 cells). Of these compounds, C6 and C14 exhibited concentration-dependent inhibition of NOX2 (IC50~1 µM). These molecules also reduced NOX2-derived oxidative stress in cardiomyocytes and prevented cardiac damage induced by ischemia-reperfusion. Compound C6 significantly reduced the membrane translocation of p47phox, a cytosolic subunit that is required for NOX2 activation. Molecular docking analyses of the binding modes of these molecules with p47phox indicated that C6 and C14 interact with specific residues in the inner part of the groove of p47phox, the binding cavity for p22phox. This combination of methods showed that novel indole heteroaryl acrylonitriles represent interesting lead compounds for developing specific and potent NOX2 inhibitors.

4.
Pharmaceutics ; 14(6)2022 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-35745866

RESUMO

We report 31 new compounds designed, synthesized and evaluated on Bcr-Abl, BTK and FLT3-ITD as part of our program to develop 2,6,9-trisubstituted purine derivatives as inhibitors of oncogenic kinases. The design was inspired by the chemical structures of well-known kinase inhibitors and our previously developed purine derivatives. The synthesis of these purines was simple and used a microwave reactor for the final step. Kinase assays showed three inhibitors with high selectivity for each protein that were identified: 4f (IC50 = 70 nM for Bcr-Abl), 5j (IC50 = 0.41 µM for BTK) and 5b (IC50 = 0.38 µM for FLT-ITD). The 3D-QSAR analysis and molecular docking studies suggested that two fragments are potent and selective inhibitors of these three kinases: a substitution at the 6-phenylamino ring and the length and volume of the alkyl group at N-9. The N-7 and the N-methyl-piperazine moiety linked to the aminophenyl ring at C-2 are also requirements for obtaining the activity. Furthermore, most of these purine derivatives were shown to have a significant inhibitory effect in vitro on the proliferation of leukaemia and lymphoma cells (HL60, MV4-11, CEM, K562 and Ramos) at low concentrations. Finally, we show that the selected purines (4i, 5b and 5j) inhibit the downstream signalling of the respective kinases in cell models. Thus, this study provides new evidence regarding how certain chemical modifications of purine ring substituents provide novel inhibitors of target kinases as potential anti-leukaemia drugs.

5.
Photochem Photobiol Sci ; 21(3): 349-359, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35088367

RESUMO

Supramolecular strategies as well as combinatorial approaches have been proposed to improve cancer therapeutics. In this work, we investigated the encapsulation of the photosensitizer acridine orange (AO) and the chemotherapeutic drug oxaliplatin (OxPt) in cucurbit[8]uril (CB[8]), and tested their effect both separate and combined on tumoral cells cultivated in vitro. Binding constants and enthalpies of reaction for the AO@CB[8], (AO)2@CB[8] and OxPt@CB[8] complexes were determined by isothermal titration calorimetry. In the case of AO, a negative cooperativity for the binding of the second AO molecule was found, in agreement with previous fluorescence titration data. We show herein that the AO@CB[8] complex was effectively incorporated within the cells and showed important phototoxicity, while the OxPt@CB[8] complex was cytotoxic only at long incubation times (24 h). Pre-treatment of the cells with the OxPt@CB[8] complex for 24 h inhibited any photodynamic action by the later treatment with the AO@CB[8] complex. However, when both complexes were co-incubated for 90 min, the combined cytotoxicity/phototoxicity was superior to any of the treatments individually. A cooperative effect was identified that added up to an extra 30% cytotoxicity/phototoxicity. The results point to an interesting system where a photosensitizer and chemotherapeutic drug are co-encapsulated in a macrocycle to develop chemophototherapy applications.


Assuntos
Antineoplásicos , Fármacos Fotossensibilizantes , Antineoplásicos/química , Antineoplásicos/farmacologia , Hidrocarbonetos Aromáticos com Pontes/química , Hidrocarbonetos Aromáticos com Pontes/farmacologia , Compostos Heterocíclicos com 2 Anéis , Imidazóis/química , Imidazóis/farmacologia , Imidazolidinas , Compostos Macrocíclicos , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia
6.
Nat Prod Res ; 36(12): 3138-3142, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34528843

RESUMO

Myrtaceae fruits (Myrceugenia obtusa, Luma apiculata, and Luma chequen) were used as food and medicine by Chilean indigenous people. This study aimed to evaluate the bioactive properties of these berry-type fruits. The antioxidant capacity determined by the FRAP assay varied between 10.4 and 646.9 mmol Fe+2/g, while the antibacterial activity against Staphylococcus aureus and Salmonella typhi was 0 - 33 mm and 0 - 7.33 mm, respectively. All the extracts were rich in polyphenols and showed low cytotoxicity. Overall, M. obtusa presented dissimilar results compared to those of L. apiculata and L. chequen, encouraging the use of these native fruits as food, nutraceutical, or pharmacological ingredients.


Assuntos
Myrtaceae , Antioxidantes/farmacologia , Chile , Frutas , Alimento Funcional , Humanos , Extratos Vegetais/farmacologia , Polifenóis/farmacologia
7.
Int J Mol Sci ; 22(20)2021 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-34681877

RESUMO

The activation of the human cannabinoid receptor type II (CB2R) is known to mediate analgesic and anti-inflammatory processes without the central adverse effects related to cannabinoid receptor type I (CB1R). In this work we describe the synthesis and evaluation of a novel series of N-aryl-2-pyridone-3-carboxamide derivatives tested as human cannabinoid receptor type II (CB2R) agonists. Different cycloalkanes linked to the N-aryl pyridone by an amide group displayed CB2R agonist activity as determined by intracellular [cAMP] levels. The most promising compound 8d exhibited a non-toxic profile and similar potency (EC50 = 112 nM) to endogenous agonists Anandamide (AEA) and 2-Arachidonoylglycerol (2-AG) providing new information for the development of small molecules activating CB2R. Molecular docking studies showed a binding pose consistent with two structurally different agonists WIN-55212-2 and AM12033 and suggested structural requirements on the pyridone substituents that can satisfy the orthosteric pocket and induce an agonist response. Our results provide additional evidence to support the 2-pyridone ring as a suitable scaffold for the design of CB2R agonists and represent a starting point for further optimization and development of novel compounds for the treatment of pain and inflammation.


Assuntos
Agonistas de Receptores de Canabinoides/química , Agonistas de Receptores de Canabinoides/farmacologia , Piridonas/química , Receptor CB2 de Canabinoide/agonistas , Animais , Ácidos Araquidônicos/química , Ácidos Araquidônicos/farmacologia , Benzoxazinas/química , Benzoxazinas/farmacologia , Sítios de Ligação , Células CHO , Agonistas de Receptores de Canabinoides/síntese química , Sobrevivência Celular/efeitos dos fármacos , Cricetulus , AMP Cíclico/metabolismo , Avaliação Pré-Clínica de Medicamentos , Endocanabinoides/química , Endocanabinoides/farmacologia , Glicerídeos/química , Glicerídeos/farmacologia , Células HL-60 , Células Hep G2 , Humanos , Simulação de Acoplamento Molecular , Morfolinas/química , Morfolinas/farmacologia , Naftalenos/química , Naftalenos/farmacologia , Alcamidas Poli-Insaturadas/química , Alcamidas Poli-Insaturadas/farmacologia , Piridonas/farmacologia , Receptor CB2 de Canabinoide/química , Receptor CB2 de Canabinoide/genética , Receptor CB2 de Canabinoide/metabolismo , Relação Estrutura-Atividade
8.
Int J Mol Sci ; 21(1)2019 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-31881717

RESUMO

We designed, synthesized, and evaluated novel 2,6,9-trisubstituted purine derivatives for their prospective role as antitumor compounds. Using simple and efficient methodologies, 31 compounds were obtained. We tested these compounds in vitro to draw conclusions about their cell toxicity on seven cancer cells lines and one non-neoplastic cell line. Structural requirements for antitumor activity on two different cancer cell lines were analyzed with SAR and 3D-QSAR. The 3D-QSAR models showed that steric properties could better explain the cytotoxicity of compounds than electronic properties (70% and 30% of contribution, respectively). From this analysis, we concluded that an arylpiperazinyl system connected at position 6 of the purine ring is beneficial for cytotoxic activity, while the use of bulky systems at position C-2 of the purine is not favorable. Compound 7h was found to be an effective potential agent when compared with a currently marketed drug, cisplatin, in four out of the seven cancer cell lines tested. Compound 7h showed the highest potency, unprecedented selectivity, and complied with all the Lipinski rules. Finally, it was demonstrated that 7h induced apoptosis and caused cell cycle arrest at the S-phase on HL-60 cells. Our study suggests that substitution in the purine core by arylpiperidine moiety is essential to obtain derivatives with potential anticancer activity.


Assuntos
Antineoplásicos/síntese química , Purinas/química , Relação Quantitativa Estrutura-Atividade , Antineoplásicos/química , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Cristalografia por Raios X , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Conformação Molecular , Purinas/síntese química , Purinas/farmacologia , Pontos de Checagem da Fase S do Ciclo Celular/efeitos dos fármacos
9.
Redox Biol ; 24: 101207, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31102971

RESUMO

Carbonate radicals (CO3-) are generated by the bicarbonate-dependent peroxidase activity of cytosolic superoxide dismutase (Cu,Zn-SOD, SOD-1). The present work explored the use of bleaching of pyrogallol red (PGR) dye to quantify the rate of CO3- formation from bovine and human SOD-1 (bSOD-1 and hSOD-1, respectively). This approach was compared to previously reported methods using electron paramagnetic resonance spin trapping with DMPO, and the oxidation of ABTS (2,2-azino-bis(3-ethylbenzothiazoline)-6-sulfonic acid). The kinetics of PGR consumption elicited by CO3- was followed by visible spectrophotometry. Solutions containing PGR (5-200 µM), SOD-1 (0.3-3 µM), H2O2 (2 mM) in bicarbonate buffer (200 mM, pH 7.4) showed a rapid loss of the PGR absorption band centered at 540 nm. The initial consumption rate (Ri) gave values independent of the initial PGR concentration allowing an estimate to be made of the rate of CO3- release of 24.6 ±â€¯4.3 µM min-1 for 3 µM bSOD-1. Both bSOD-1 and hSOD-1 showed a similar peroxidase activity, with enzymatic inactivation occurring over a period of 20 min. The single Trp residue (Trp32) present in hSOD-1 was rapidly consumed (initial consumption rate 1.2 ±â€¯0.1 µM min-1) with this occurring more rapidly than hSOD-1 inactivation, suggesting that these processes are not directly related. Added free Trp was rapidly oxidized in competition with PGR. These data indicate that PGR reacts rapidly and efficiently with CO3- resulting from the peroxidase activity of SOD-1, and that PGR-bleaching is a simple, fast and cheap method to quantify CO3- release from bSOD-1 and hSOD-1 peroxidase activity.


Assuntos
Bicarbonatos/química , Clareadores/química , Carbonatos/química , Radicais Livres/química , Pirogalol/análogos & derivados , Superóxido Dismutase-1/química , Bicarbonatos/metabolismo , Carbonatos/metabolismo , Radicais Livres/metabolismo , Oxirredução , Pirogalol/química , Análise Espectral , Superóxido Dismutase-1/metabolismo
10.
Molecules ; 23(7)2018 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-30029513

RESUMO

A rapid emergence of resistant bacteria is occurring worldwide, endangering the efficacy of antibiotics and reducing the therapeutic arsenal available for treatment of infectious diseases. In the present study, we developed a new class of compounds with antibacterial activity obtained by a simple, two step synthesis and screened the products for in vitro antibacterial activity against ATCC® strains using the broth microdilution method. The compounds exhibited minimum inhibitory concentrations (MIC) of 1⁻32 µg/mL against Gram-positive ATCC® strains. The structure⁻activity relationship indicated that the thiophenol ring is essential for antibacterial activity and the substituents on the thiophenol ring module, for antibacterial activity. The most promising compounds detected by screening were tested against methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus faecium (VREF) clinical isolates. We found remarkable activity against VREF for compounds 7 and 16, were the MIC50/90 were 2/4 µg/mL and 4/4 µg/mL, respectively, while for vancomycin the MIC50/90 was 256/512 µg/mL. Neither compound affected cell viability in any of the mammalian cell lines at any of the concentrations tested. These in vitro data show that compounds 7 and 16 have an interesting potential to be developed as new antibacterial drugs against infections caused by VREF.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Enterococcus faecium/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Antibacterianos/síntese química , Fenômenos Químicos , Humanos , Testes de Sensibilidade Microbiana , Modelos Moleculares , Estrutura Molecular , Relação Estrutura-Atividade , Difração de Raios X
11.
Arch Pharm (Weinheim) ; 351(5): e1800024, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29611620

RESUMO

With the purpose of expanding the structural variety of chemical compounds available as pharmacological tools for the treatment of Alzheimer's disease, we synthesized and evaluated a novel series of indole-benzoxazinones (Family I) and benzoxazine-arylpiperazine derivatives (Family II) for potential human acetylcholinesterase (hAChE) inhibitory properties. The most active compounds 7a and 7d demonstrated effective inhibitory profiles with Ki values of 20.3 ± 0.9 µM and 20.2 ± 0.9 µM, respectively. Kinetic inhibition assays showed non-competitive inhibition of AChE by the tested compounds. According to our docking studies, the most active compounds from both series (Families I and II) showed a binding mode similar to donepezil and interact with the same residues.


Assuntos
Acetilcolinesterase/efeitos dos fármacos , Benzoxazinas/farmacologia , Inibidores da Colinesterase/farmacologia , Piperazinas/farmacologia , Acetilcolinesterase/metabolismo , Doença de Alzheimer/tratamento farmacológico , Benzoxazinas/síntese química , Benzoxazinas/química , Inibidores da Colinesterase/síntese química , Inibidores da Colinesterase/química , Donepezila , Desenho de Fármacos , Humanos , Indanos/farmacologia , Simulação de Acoplamento Molecular , Piperazinas/síntese química , Piperazinas/química , Piperidinas/farmacologia , Ligação Proteica , Relação Estrutura-Atividade
12.
Molecules ; 22(10)2017 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-28937618

RESUMO

Factor Xa (FXa), a vitamin K-dependent serine protease plays a pivotal role in the coagulation cascade, one of the most interesting targets for the development of new anticoagulants. In the present work, we performed a virtual screening campaign based on ligand-based shape and electrostatic similarity search and protein-ligand docking to discover novel FXa-targeted scaffolds for further development of inhibitors. From an initial set of 260,000 compounds from the NCI Open database, 30 potential FXa inhibitors were identified and selected for in vitro biological evaluation. Compound 5 (NSC635393, 4-(3-methyl-4H-1,4-benzothiazin-2-yl)-2,4-dioxo-N-phenylbutanamide) displayed an IC50 value of 2.02 nM against human FXa. The identified compound may serve as starting point for the development of novel FXa inhibitors.


Assuntos
Inibidores do Fator Xa/farmacologia , Coagulação Sanguínea/efeitos dos fármacos , Bases de Dados Factuais , Inibidores Enzimáticos/farmacologia , Fator Xa/química , Fator Xa/metabolismo , Simulação de Acoplamento Molecular , Estrutura Secundária de Proteína , Relação Estrutura-Atividade
13.
J Inorg Biochem ; 174: 90-101, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28648925

RESUMO

Four new neutral N,N imidoyl-indazole ligands (L1, L3, L6, L7) and six new Pt(II)-based complexes (C1-5 and C7) were synthesized and characterized by spectroscopic and spectrometric techniques. Additionally, compounds L6, L7, C3, C5 and C7 were analyzed using X-ray diffraction. An evaluation of cytotoxicity and cell death in vitro for both ligands and complexes was performed by colorimetric assay and flow cytometry, in four cancer cell lines and VERO cells as the control, respectively. Cytotoxicity and selectivity demonstrated by each compound were dependent on the cancer cell line assayed. IC50 values of complexes C1-5 and C7 were lower than those exhibited for the reference drug cisplatin, and selectivity of these complexes was in general terms greater than cisplatin on three cancer cell lines studied. In HL60 cells, complexes C1 and C5 exhibited the lowest values of IC50 and were almost five times more selective than cisplatin. Flow cytometry results suggest that each complex predominantly induced necrosis, and its variant necroptosis, instead of apoptosis in all cancer cell lines studied. DNA binding assays, using agarose gel electrophoresis and UV-visible spectrophotometry studies, displayed a strong interaction only between C4 and DNA. In fact, theoretical calculations showed that C4-DNA binding complex was the most thermodynamic favorable interaction among the complexes in study. Overall, induction of cell death by dependent and independent-DNA-metal compound interactions were possible using imidoyl-indazole Pt(II) complexes as anticancer agents.


Assuntos
Antineoplásicos , Apoptose/efeitos dos fármacos , DNA de Neoplasias/metabolismo , Indazóis , Neoplasias/tratamento farmacológico , Compostos Organoplatínicos , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Chlorocebus aethiops , Células HL-60 , Células HeLa , Humanos , Indazóis/química , Indazóis/farmacocinética , Indazóis/farmacologia , Neoplasias/metabolismo , Neoplasias/patologia , Compostos Organoplatínicos/síntese química , Compostos Organoplatínicos/química , Compostos Organoplatínicos/farmacocinética , Compostos Organoplatínicos/farmacologia , Células Vero
14.
Bioorg Med Chem ; 25(10): 2681-2688, 2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28385594

RESUMO

We synthesized a new family of six 4(3H)quinazolinimines based on the reaction between (E)-N-(2-cyanophenyl)benzimidoyl chloride and substituted anilines reaching the formation of their corresponding C2, N3-substituted quinazoliniminium chlorides. This method provides novel, direct and flexible access to diverse substituted 4(3H)quinazolinimines. New compounds obtained following the proposed synthesis were fully characterized and, including the thirteen 4(3H)quinazolinimines synthesized by this method and previously reported by us, were used to study its cytotoxic effect on neoplastic cell lines. The mechanism involved in cell toxicity was also studied. Results showed that these compounds were highly cytotoxic, in particular on Human Promyelocytic Leukemia cells (HL60) and Chronic Myelogenous Leukemia cells (K562) when compared with conventional antineoplastic drugs such as etoposide and cisplatin. The mechanism associated to cytotoxic effect was mainly apoptosis, which not was decreased by antioxidant addition, thereby suggesting that the compounds exert apoptotic death through a mechanism unrelated with oxidative stress.


Assuntos
Antineoplásicos/síntese química , Quinazolinonas/química , Antineoplásicos/química , Antineoplásicos/toxicidade , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Células HL-60 , Humanos , Leucemia Promielocítica Aguda/metabolismo , Leucemia Promielocítica Aguda/patologia , Estresse Oxidativo/efeitos dos fármacos , Quinazolinonas/síntese química , Quinazolinonas/toxicidade , Relação Estrutura-Atividade
15.
Eur J Pharm Sci ; 101: 1-10, 2017 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-28137469

RESUMO

The preceding years have brought an exponential increase in our understanding of the endocannabinoid system (ECS), including the knowledge of CB1 and CB2 cannabinoid receptors, endocannabinoids, and the enzymes that synthesize and degrade endocannabinoids. Among these ECS components CB2 receptors have been the subject of considerable attention, primarily due to their promising therapeutic potential to treat numerous pathologies while avoiding the adverse psychotropic effects that can accompany CB1 receptor-based therapies. Recently, our research group has reported a new series of non-cytotoxic benzo[d]imidazoles and benzo[b]thiophenes displaying high CB2/CB1 selectivity index. In order to investigate the structural requirements for CB2 ligands and to derive a predictive model that can be used for the design of novel selective CB2 ligands, a three-dimensional quantitative structure-activity relationship (3D-QSAR) study was performed on the above mentioned chemical series employing comparative molecular field analysis (CoMFA) and comparative molecular similarity index analysis (CoMSIA) techniques. The CoMFA and CoMSIA models displayed high external predictability (rpred2 0.919 and 0.908) and good statistical robustness. Valuable information regarding the steric, electrostatic and hydrophobic properties of the molecules was obtained, and several modifications around both heterocycles were evaluated with the aim to generate new promising series of benzo[d]imidazoles and benzo[b]thiophenes derivatives displaying high CB2 selectivity and low toxicity.


Assuntos
Benzimidazóis/química , Receptor CB2 de Canabinoide/química , Tiofenos/química , Canabinoides/química , Interações Hidrofóbicas e Hidrofílicas , Ligantes , Modelos Moleculares , Relação Quantitativa Estrutura-Atividade , Receptor CB1 de Canabinoide/química , Eletricidade Estática
16.
Eur J Pharmacol ; 799: 41-47, 2017 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-28132911

RESUMO

Leukotriene A4 hydrolase is a soluble enzyme with epoxide hydrolase and aminopeptidase activities catalysing the conversion of leukotriene A4 to leukotriene B4 and the hydrolysis of the peptide proline-glycine-proline. Imbalances in leukotriene B4 synthesis are related to several pathologic conditions. Currently there are no available drugs capable to modulate the synthesis of leukotriene B4 or to block its receptors. Here we show the inhibitory profile of alpha lipoic acid on the activity of leukotriene A4 Hydrolase. Alpha lipoic acid inhibited both activities of the enzyme at concentrations lower than 10µM. The 5-lipoxygenase inhibitor zileuton, or the 5-lipoxygenase activating protein inhibitor MK-886, were unable to inhibit the activity of the enzyme. Acute promyelocytic leukaemia HL-60 cells were differentiated to leukotriene A4 hydrolase expressing neutrophil-like cells. Alpha lipoic acid inhibited the aminopeptidase activity of the cytosolic fraction from neutrophil-like cells but had no effect on the cytosolic fraction from undifferentiated cells. Docking and molecular dynamic approximations revealed that alpha lipoic acid participates in electrostatic interactions with K-565 and R-563, which are key residues for the carboxylate group recognition of endogenous substrates by the enzyme. Alpha lipoic acid is a compound widely used in clinical practice, most of its therapeutic effects are associated with its antioxidants properties, however, antioxidant effect alone is unable to explain all clinical effects observed with alpha lipoic acid. Our results invite to evaluate the significance of the inhibitory effect of alpha lipoic acid on the catalytic activity of leukotriene A4 hydrolase using in vivo models.


Assuntos
Inibidores Enzimáticos/farmacologia , Epóxido Hidrolases/metabolismo , Ácido Tióctico/farmacologia , Citosol/enzimologia , Relação Dose-Resposta a Droga , Epóxido Hidrolases/antagonistas & inibidores , Humanos , Neutrófilos/citologia
17.
Eur J Med Chem ; 124: 17-35, 2016 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-27560280

RESUMO

Herein we report the design, synthesis, bioinformatic and biological studies of benzimidazole and benzothiophene derivatives as new cannabinoid receptor ligands. To test the hypothesis that the lack of a hydrogen bond interaction between benzimidazole and benzothiophene derivatives with Lys192 reduces their affinity for CB1 receptors (as we previously reported) and leads to CB2 selectivity, most of the tested compounds do not exhibit hydrogen bond acceptors. All compounds displayed mostly CB2 selectivity, although this was more pronounced in the benzimidazoles derivatives. Furthermore, docking assays revealed a ∏-cation interaction with Lys109 which could play a key role for the CB2 selectivity index. The series displayed low toxicity on five different cell lines. Derivative 8f presented the best binding profile (Ki = 0.08 µM), high selectivity index (KiCB1/KiCB2) and a low citoxicity. Interestingly, in cell viability experiments, using HL-60 cells (expressing exclusively CB2 receptors), all synthesised compounds were shown to be cytotoxic, suggesting that a CB2 agonist response may be involved.


Assuntos
Benzimidazóis/metabolismo , Benzimidazóis/farmacologia , Simulação de Acoplamento Molecular , Receptor CB2 de Canabinoide/metabolismo , Tiofenos/metabolismo , Tiofenos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Benzimidazóis/síntese química , Benzimidazóis/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Técnicas de Química Sintética , Desenho de Fármacos , Humanos , Ligação Proteica , Conformação Proteica , Receptor CB2 de Canabinoide/química , Tiofenos/síntese química , Tiofenos/química
18.
Molecules ; 20(4): 6808-26, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25884555

RESUMO

A series of 2,6,9-trisubstituted purine derivatives have been synthesized and investigated for their potential role as antitumor agents. Twelve compounds were obtained by a three step synthetic procedure using microwave irradiation in a pivotal step. All compounds were evaluated in vitro to determine their potential effect on cell toxicity by the MTT method and flow cytometry analysis on four cancer cells lines and Vero cells. Three out of twelve compounds were found to be promising agents compared to a known and effective anticancer drug, etoposide, in three out of four cancer cell lines assayed with considerable selectivity. Preliminary flow cytometry data suggests that compounds mentioned above induce apoptosis on these cells. The main structural requirements for their activity for each cancer cell line were characterized with a preliminary pharmacophore model, which identified aromatic centers, hydrogen acceptor/donor center and a hydrophobic area. These features were consistent with the cytotoxic activity of the assayed compounds.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Modelos Moleculares , Purinas/química , Purinas/farmacologia , Animais , Antineoplásicos/síntese química , Linhagem Celular Tumoral , Chlorocebus aethiops , Humanos , Estrutura Molecular , Purinas/síntese química , Relação Estrutura-Atividade , Células Vero
19.
PLoS Negl Trop Dis ; 7(4): e2173, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23638194

RESUMO

Chagas' disease, produced by Trypanosoma cruzi, affects more than 8 million people, producing approximately 10,000 deaths each year in Latin America. Migration of people from endemic regions to developed countries has expanded the risk of infection, transforming this disease into a globally emerging problem. PGE2 and other eicosanoids contribute to cardiac functional deficits after infection with T. cruzi. Thus, the inhibition of host cyclooxygenase (COX) enzyme emerges as a potential therapeutic target. In vivo studies about the effect of acetylsalicylic acid (ASA) upon T. cruzi infection are controversial, and always report the effect of ASA at a single dose. Therefore, we aimed to analyze the effect of ASA at different doses in an in vivo model of infection and correlate it with the production of arachidonic acid metabolites. ASA decreased mortality, parasitemia, and heart damage in T. cruzi (Dm28c) infected mice, at the low doses of 25 and 50 mg/Kg. However, this effect disappeared when the high ASA doses of 75 and 100 mg/Kg were used. We explored whether this observation was related to the metabolic shift toward the production of 5-lipoxygenase derivatives, and although we did not observe an increase in LTB4 production in infected RAW cells and mice infected, we did find an increase in 15-epi-LXA4 (an ASA-triggered lipoxin). We also found high levels of 15-epi-LXA4 in T. cruzi infected mice treated with the low doses of ASA, while the high ASA doses decreased 15-epi-LXA4 levels. Importantly, 15-epi-LXA4 prevented parasitemia, mortality, and cardiac changes in vivo and restored the protective role in the treatment with a high dose of ASA. This is the first report showing the production of ASA-triggered lipoxins in T. cruzi infected mice, which demonstrates the role of this lipid as an anti-inflammatory molecule in the acute phase of the disease.


Assuntos
Aspirina/uso terapêutico , Doença de Chagas/prevenção & controle , Lipoxinas/metabolismo , Trypanosoma cruzi/efeitos dos fármacos , Trypanosoma cruzi/patogenicidade , Animais , Linhagem Celular , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos BALB C
20.
Curr Med Chem ; 18(1): 144-61, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21110810

RESUMO

Chagas disease is one of the most important endemic diseases in Latin America, caused by Trypanosoma cruzi. The drugs used for the treatment of this disease, nifurtimox and benznidazole, are toxic and present severe side effects. The need of effective drugs, without adverse effects, has stimulated the search for new compounds with potential clinical utility. An overview of a number of natural naphthoquinones tested against T. cruzi parasites is provided. Among natural naphthoquinones, lapachol, ß-lapachone and its α-isomer have demonstrated useful trypanocidal activities. In the search for new trypanocidal agents, this review outlines different structural modifications of natural quinones, as well as synthetic quinones, which have been subjected to trypanocidal studies. This review summarizes the mechanism of action and structure-activity relationships of the quinone derivatives, including some theoretical calculations that discuss the correlation of stereo electronic properties with the trypanocidal activity. In this context, this review will be useful for the development of new antichagasic drugs based mainly on structural modification of natural quinones.


Assuntos
Doença de Chagas/tratamento farmacológico , Naftoquinonas/química , Tripanossomicidas/química , Trypanosoma cruzi/efeitos dos fármacos , Humanos , Naftoquinonas/síntese química , Naftoquinonas/uso terapêutico , Relação Estrutura-Atividade , Tripanossomicidas/síntese química , Tripanossomicidas/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...